References
1.
Stringer, C., Wang, T., Michaelos, M. &
Pachitariu, M. Cellpose: A generalist
algorithm for cellular segmentation. Nature Methods
18, 100–106 (2021).
2.
Chamier, L. von et al. Democratising deep
learning for microscopy with ZeroCostDL4Mic. Nature
Communications 12, 2276 (2021).
3.
Guo,
M. et al. Deep learning-based
aberration compensation improves contrast and resolution in fluorescence
microscopy. Nature Communications 16, 313
(2025).
4.
Wu,
Y. & Shroff, H. Multiscale
fluorescence imaging of living samples. Histochemistry and Cell
Biology 158, 301–323 (2022).
5.
Schermelleh, L., Heintzmann, R. &
Leonhardt, H. A guide to
super-resolution fluorescence microscopy. Journal of Cell
Biology 190, 165–175 (2010).
6.
Archit, A. et al. Segment anything for
microscopy. Nature Methods 22, 579–591
(2025).
7.
Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in
cell biology. Nature Reviews Molecular Cell Biology
18, 685–701 (2017).
8.
Schermelleh, L. et al. Super-resolution
microscopy demystified. Nature Cell Biology
21, 72–84 (2019).
9.
Ji,
N. Adaptive optical
fluorescence microscopy. Nature Methods
14, 374–380 (2017).
10.
Hampson, K. M. et al. Adaptive optics for
high-resolution imaging. Nature Reviews Methods Primers
1, 68 (2021).
11.
Shroff, H., Testa, I., Jug, F. & Manley, S.
Live-cell imaging
powered by computation. Nature Reviews Molecular Cell
Biology 25, 443–463 (2024).
12.
Venkatesh, M., Mohan, K. & Seelamantula, C.
S. Directional bilateral
filters for smoothing fluorescence microscopy images. AIP
Advances 5, 084805 (2015).
13.
Danielyan, A., Wu, Y.-W., Shih, P.-Y.,
Dembitskaya, Y. & Semyanov, A. Denoising of
two-photon fluorescence images with block-matching 3D filtering.
Methods 68, 308–316 (2014).
14.
Zhang, Y. et al. A poisson-gaussian
denoising dataset with real fluorescence microscopy images. in 2019
IEEE/CVF conference on computer vision and pattern recognition
(CVPR) 11702–11710 (Optica Publishing Group, 2019). doi:10.1109/CVPR.2019.01198.
15.
Li,
J., Luisier, F. & Blu, T. Pure-let deconvolution of 3D fluorescence
microscopy images. in 2017 IEEE 14th international symposium on
biomedical imaging (ISBI 2017) 723–727 (2017). doi:10.1109/ISBI.2017.7950621.
16.
Makitalo, M. & Foi, A. Optimal inversion of the
generalized anscombe transformation for poisson-gaussian noise.
IEEE Transactions on Image Processing 22,
91–103 (2013).
17.
Luisier, F., Vonesch, C., Blu, T. & Unser,
M. Fast
interscale wavelet denoising of poisson-corrupted images. Signal
Processing 90, 415–427 (2010).
18.
Walt, S. van der et al. Scikit-image: Image processing in
python. PeerJ 2, e453 (2014).
19.
Wiener, N. Extrapolation, Interpolation,
and Smoothing of Stationary Time Series: With Engineering
Applications. (The MIT Press, 1949). doi:10.7551/mitpress/2946.001.0001.
20.
Tikhonov, A. N. Solution of incorrectly
formulated problems and the regularization method. Soviet Math.
Dokl. 4, 1035–1038 (1963).
21.
Miller, K. Least squares methods for
ill-posed problems with a prescribed bound. SIAM Journal on
Mathematical Analysis 1, 52–74 (1970).
22.
Beck, A. & Teboulle, M. A fast iterative
shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences 2, 183–202
(2009).
23.
Lucy, L. B. An iterative
technique for the rectification of observed distributions.
Astronomical Journal 79, 745 (1974).
24.
Richardson, W. H. Bayesian-based iterative
method of image restoration*.
J. Opt. Soc. Am. 62, 55–59 (1972).
25.
Sarder, P. & Nehorai, A. Deconvolution methods
for 3-d fluorescence microscopy images. IEEE Signal Processing
Magazine 23, 32–45 (2006).
26.
Goodwin, P. C. Chapter 10 -
quantitative deconvolution microscopy. in Quantitative imaging
in cell biology (eds. Waters, J. C. & Wittman, T.) vol. 123
177–192 (Academic Press, 2014).
27.
Guo, M. et al. Rapid image
deconvolution and multiview fusion for optical microscopy.
Nature Biotechnology 38, 1337–1346
(2020).
28.
Schindelin, J. et al. Fiji: An open-source platform
for biological-image analysis. Nature Methods
9, 676–682 (2012).
29.
Sage, D. et al. DeconvolutionLab2: An
open-source software for deconvolution microscopy. Methods
115, 28–41 (2017).
30.
Bazin, P.-L. et al. Volumetric
neuroimage analysis extensions for the MIPAV software package.
Journal of Neuroscience Methods 165, 111–121
(2007).
31.
Booth, M. J. Adaptive optics in
microscopy. Philosophical Transactions: Mathematical, Physical
and Engineering Sciences 365, 2829–2843
(2007).
32.
Hell, S. W. Far-field optical
nanoscopy. Science 316, 1153–1158
(2007).
33.
Vicidomini, G., Bianchini, P. & Diaspro, A.
STED super-resolved
microscopy. Nature Methods 15, 173–182
(2018).
34.
Wu,
Y. & Shroff, H. Faster, sharper, and
deeper: Structured illumination microscopy for biological imaging.
Nature Methods 15, 1011–1019 (2018).
35.
Chen, F., Tillberg, P. W. & Boyden, E. S.
Expansion
microscopy. Science 347, 543–548
(2015).
36.
Wassie, A. T., Zhao, Y. & Boyden, E. S. Expansion microscopy:
Principles and uses in biological research. Nature Methods
vol. 16 33–41 (2019).
37.
Valli, J. et al. Seeing beyond the
limit: A guide to choosing the right super-resolution microscopy
technique. Journal of Biological Chemistry
297, 100791 (2021).
38.
Chen, H. et al. Advancements and practical
considerations for biophysical research: Navigating the challenges and
future of super-resolution microscopy. Chemical
& Biomedical Imaging 2, 331–344
(2024).
39.
Hagen, G. M. et al. Fluorescence
microscopy datasets for training deep neural networks.
GigaScience 10, giab032 (2021).
40.
Weigert, M. et al. Content-aware image
restoration: Pushing the limits of fluorescence microscopy.
Nature Methods 15, 1090–1097 (2018).
41.
Chen, J. et al. Three-dimensional
residual channel attention networks denoise and sharpen fluorescence
microscopy image volumes. Nature Methods
18, 678–687 (2021).
42.
Qiao, C. et al. Evaluation and
development of deep neural networks for image super-resolution in
optical microscopy. Nature Methods 18,
194–202 (2021).
43.
Hou, X. et al. HD2Net: A deep learning
framework for simultaneous denoising and deaberration in fluorescence
microscopy. Opt. Express 33, 27317–27333
(2025).
44.
Zhang, K., Zuo, W., Chen, Y., Meng, D. &
Zhang, L. Beyond a
gaussian denoiser: Residual learning of deep CNN for image
denoising. IEEE Transactions on Image Processing
26, 3142–3155 (2017).
45.
Dabov, K., Foi, A., Katkovnik, V. &
Egiazarian, K. Image
denoising by sparse 3-d transform-domain collaborative filtering.
IEEE Transactions on Image Processing 16,
2080–2095 (2007).
46.
Krull, A., Buchholz, T.-O. & Jug, F.
Noise2Void - learning denoising from single noisy images. in 2019
IEEE/CVF conference on computer vision and pattern recognition
(CVPR) 2124–2132 (2019). doi:10.1109/CVPR.2019.00223.
47.
Batson, J. & Royer, L. Noise2Self:
Blind denoising by self-supervision. in Proceedings of the 36th
international conference on machine learning (eds. Chaudhuri, K.
& Salakhutdinov, R.) vol. 97 524–533 (PMLR, 2019).
48.
Lehtinen, J. et al. Noise2Noise:
Learning image restoration without clean data. in Proceedings of
the 35th international conference on machine learning (eds. Dy, J.
& Krause, A.) vol. 80 2965–2974 (PMLR, 2018).
49.
Li,
Y. et al. Incorporating the
image formation process into deep learning improves network
performance. Nature Methods 19, 1427–1437
(2022).
50.
Yanny, K., Monakhova, K., Shuai, R. W. &
Waller, L. Deep learning
for fast spatially varying deconvolution. Optica
9, 96–99 (2022).
51.
Saha, D. et al. Practical sensorless aberration
estimation for 3D microscopy with deep learning. Opt.
Express 28, 29044–29053 (2020).
52.
Kang, I., Zhang, Q., Yu, S. X. & Ji, N. Coordinate-based
neural representations for computational adaptive optics in widefield
microscopy. Nature Machine Intelligence 6,
714–725 (2024).
53.
Kang, I. et al. Adaptive optical
correction in in vivo two-photon fluorescence microscopy with neural
fields. bioRxiv (2024) doi:10.1101/2024.10.20.619284.
54.
Fersini, F. et al. Wavefront estimation through
structured detection in laser scanning microscopy. Biomed. Opt.
Express 16, 2135–2155 (2025).
55.
Zhou, Y., Jin, Z., Zhao, Q., Xiong, B. &
Cao, X. Aberration
modeling in deep learning for volumetric reconstruction of light-field
microscopy. Laser & Photonics Reviews
17, 2300154 (2023).
56.
Qiao, C. et al. Deep learning-based optical
aberration estimation enables offline digital adaptive optics and
super-resolution imaging. Photon. Res. 12,
474–484 (2024).
57.
Hu,
L., Hu, S., Gong, W. & Si, K. Image enhancement for
fluorescence microscopy based on deep learning with prior knowledge of
aberration. Opt. Lett. 46, 2055–2058
(2021).
58.
Wang, H. et al. Deep learning enables
cross-modality super-resolution in fluorescence microscopy.
Nature Methods 16, 103–110 (2019).
59.
Park, H. et al. Deep learning enables
reference-free isotropic super-resolution for volumetric fluorescence
microscopy. Nature Communications 13, 3297
(2022).
60.
Ning, K. et al. Deep self-learning
enables fast, high-fidelity isotropic resolution restoration for
volumetric fluorescence microscopy. Light: Science
& Applications 12, 204
(2023).
61.
Ronneberger, O., Fischer, P. & Brox, T.
U-net: Convolutional networks for biomedical image segmentation. in
Medical image computing and computer-assisted intervention – MICCAI
2015 (eds. Navab, N., Hornegger, J., Wells, W. M. & Frangi, A.
F.) 234–241 (Springer International Publishing, Cham, 2015). doi:10.1007/978-3-319-24574-4_28.
62.
Ji,
Z., Li, J. D. & Telgarsky, M. Early-stopped
neural networks are consistent. in Advances in neural
information processing systems 34 - 35th conference on neural
information processing systems, NeurIPS 2021 (eds. Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, {Percy. S. }. & Vaughan}, J.
{Wortman) 1805–1817 (Neural information processing systems foundation,
2021).
63.
Santos, C. F. G. D. & Papa, J. P. Avoiding overfitting: A survey on
regularization methods for convolutional neural networks. ACM
Comput. Surv. 54, (2022).
64.
Miseta, T., Fodor, A. & Vathy-Fogarassy, Á.
Surpassing early
stopping: A novel correlation-based stopping criterion for neural
networks. Neurocomputing 567, 127028
(2024).
65.
Shah, Z. H. et al. Image restoration in
frequency space using complex-valued CNNs. Frontiers in
Artificial Intelligence Volume 7 - 2024,
(2024).
66.
Liu, J., Gao, F., Zhang, L. & Yang, H. A saturation artifacts
inpainting method based on two-stage GAN for fluorescence microscope
images. Micromachines 15, (2024).
67.
Bouchard, C. et al. Resolution enhancement
with a task-assisted GAN to guide optical nanoscopy image analysis and
acquisition. Nature Machine Intelligence
5, 830–844 (2023).
68.
Qiao, C. et al. Rationalized deep
learning super-resolution microscopy for sustained live imaging of rapid
subcellular processes. Nature Biotechnology
41, 367–377 (2023).
69.
Zhong, L., Liu, G. & Yang, G. Blind denoising of
fluorescence microscopy images using GAN-based global noise
modeling. in ISBI 863–867 (2021).
70.
Park, E. et al. Unsupervised
inter-domain transformation for virtually stained high-resolution
mid-infrared photoacoustic microscopy using explainable deep
learning. Nature Communications 15, 10892
(2024).
71.
Osuna-Vargas, P. et al. Denoising
diffusion models for high-resolution microscopy image restoration. in
2025 IEEE/CVF winter conference on applications of computer vision
(WACV) 4320–4330 (2025). doi:10.1109/WACV61041.2025.00424.
72.
Zhang, Y. et al. Image super-resolution using
very deep residual channel attention networks. (2018).
73.
Wang, Z., Bovik, A. C., Sheikh, H. R. &
Simoncelli, E. P. Image quality assessment:
From error visibility to structural similarity. IEEE
Transactions on Image Processing 13, 600–612
(2004).
74.
Gonzalez, R. C. & Woods, R. E. Digital Image
Processing. (Prentice Hall, 2008).
75.
Haase, R., Tischer, C., Bankhead, P., Miura, K.
& Cimini, B. A call
for FAIR and open-access training materials to advance
BioImage analysis. (2024).
76.
Ljosa, V., Sokolnicki, K. L. & Carpenter,
A. E. Annotated
high-throughput microscopy image sets for validation. Nat.
Methods 9, 637 (2012).
77.
Cimini, B. A. When
to say ’good enough’. (2019).
78.
Jamali, N., Dobson, E. T. A., Eliceiri, K. W.,
Carpenter, A. E. & Cimini, B. A. 2020
BioImage analysis survey: Community experiences and needs
for the future. Biological Imaging 1, e4
(2021).
79.
Sivagurunathan, S. et al. Bridging imaging users to
imaging analysis - a community survey. J. Microsc.
(2023).
80.
Schindelin, J., Rueden, C. T., Hiner, M. C.
& Eliceiri, K. W. The
ImageJ ecosystem: An open platform for biomedical image
analysis. Mol. Reprod. Dev. 82, 518–529
(2015).
81.
Napari: A multi-dimensional image viewer for
python. doi:10.5281/zenodo.3555620.
82.
Stirling, D. R. et al. CellProfiler
4: Improvements in speed, utility and usability. BMC
Bioinformatics 22, 433 (2021).
83.
Bankhead, P. et al. QuPath:
Open source software for digital pathology image analysis. Sci.
Rep. 7, 16878 (2017).
84.
Chaumont, F. de et al. Icy: An open bioimage
informatics platform for extended reproducible research. Nat.
Methods 9, 690–696 (2012).
85.
Berg, S. et al. Ilastik: Interactive
machine learning for (bio)image analysis. Nat. Methods
16, 1226–1232 (2019).
86.
Arzt, M. et al. LABKIT:
Labeling and segmentation toolkit for big image data. Front.
Comput. Sci. 4, (2022).
87.
Schmidt, U., Weigert, M., Broaddus, C. &
Myers, G. Cell detection with star-convex polygons. in Medical image
computing and computer assisted intervention – MICCAI 2018 (eds.
Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. &
Fichtinger, G.) 265–273 (Springer International Publishing, Cham, 2018).
doi:10.1007/978-3-030-00934-2_30.
88.
Goldsborough, T. et al. InstanSeg:
An embedding-based instance segmentation algorithm optimized for
accurate, efficient and portable cell segmentation. arXiv
[cs.CV] (2024).
89.
Pachitariu, M. & Stringer, C. Cellpose 2.0: How to
train your own model. Nat. Methods 19,
1634–1641 (2022).
90.
Zhang, C. et al. Bio-image informatics
index BIII: A unique database of image analysis tools and
workflows for and by the bioimaging community. arXiv
[q-bio.QM] (2023).
91.
Ouyang, W. et al.
BioImage model zoo: A community-driven resource for
accessible deep learning in BioImage analysis.
bioRxiv 2022.06.07.495102 (2022) doi:10.1101/2022.06.07.495102.
92.
Rueden, C. T. et al. Scientific community
image forum: A discussion forum for scientific image software.
PLoS Biol. 17, e3000340 (2019).
93.
Gómez-de-Mariscal, E. et al. DeepImageJ:
A user-friendly environment to run deep learning models in
ImageJ. Nat. Methods 18,
1192–1195 (2021).
94.
Ouyang, W., Mueller, F., Hjelmare, M.,
Lundberg, E. & Zimmer, C. ImJoy: An
open-source computational platform for the deep learning era.
Nat. Methods 16, 1199–1200 (2019).
95.
Shah, R., Gogoberidze, N. & Cimini, B. Bilayers.
96.
Hidalgo-Cenalmor, I. et al. DL4MicEverywhere:
Deep learning for microscopy made flexible, shareable and
reproducible. Nat. Methods 21, 925–927
(2024).
97.
Kluyver, T. et al. Jupyter notebooks - a
publishing format for reproducible computational workflows. in
Positioning and power in academic publishing: Players, agents and
agendas (eds. Loizides, F. & Scmidt, B.) 87–90 (IOS Press,
Netherlands, 2016).
98.
Kreshuk, A. & Zhang, C. Machine
learning: Advanced image segmentation using ilastik. Methods
Mol. Biol. 2040, 449–463 (2019).
99.
Arganda-Carreras, I. et al. Trainable
Weka Segmentation: A machine learning tool for
microscopy pixel classification. Bioinformatics
33, 2424–2426 (2017).
100.
Fazeli, E. et al. Automated cell
tracking using StarDist and TrackMate.
F1000Research 9, 1279 (2020).
101.
Krizhevsky, A., Sutskever, I. & Hinton, G.
E. ImageNet
Classification with Deep
Convolutional Neural
Networks. in Advances in Neural
Information Processing
Systems vol. 25 (Curran Associates, Inc., 2012).
102.
Ahlers, J. et al. Napari: A
multi-dimensional image viewer for Python. (2023) doi:10.5281/zenodo.8115575.
103.
Russell, C. T. et al. Bia-binder:
A web-native cloud compute service for the bioimage
analysis community. (2024) doi:10.48550/arXiv.2411.12662.
104.
Follain, G. et al. Fast label-free
live imaging reveals key roles of flow dynamics and
CD44-HA interaction in cancer cell arrest on
endothelial monolayers. (2024) doi:10.1101/2024.09.30.615654.
105.
Moen, E. et al. Deep learning for
cellular image analysis. Nature Methods
16, 1233–1246 (2019).
106.
Pylvänäinen, J. W., Gómez-de-Mariscal, E.,
Henriques, R. & Jacquemet, G. Live-cell imaging in
the deep learning era. Current Opinion in Cell Biology
85, 102271 (2023).
107.
Laine, R. F., Arganda-Carreras, I., Henriques,
R. & Jacquemet, G. Avoiding a replication
crisis in deep-learning-based bioimage analysis. Nature
methods 18, 1136–1144 (2021).
108.
Heinrich, L. et al. Whole-cell organelle
segmentation in volume electron microscopy. Nature
599, 141–146 (2021).
109.
Liu, B. et al. Self-supervised
learning reveals clinically relevant histomorphological patterns for
therapeutic strategies in colon cancer. Nature
Communications 16, 2328 (2025).
110.
Moshkov, N. et al. Learning
representations for image-based profiling of perturbations.
Nature Communications 15, 1594 (2024).
111.
Caicedo, J. C., McQuin, C., Goodman, A., Singh,
S. & Carpenter, A. E. Weakly Supervised
Learning of Single-Cell
Feature Embeddings. in 2018
IEEE/CVF Conference on
Computer Vision and Pattern
Recognition 9309–9318 (2018). doi:10.1109/CVPR.2018.00970.
112.
Li, Y. & Shen, L. cC-GAN: A
Robust Transfer-Learning
Framework for HEp-2 Specimen
Image Segmentation. IEEE Access
6, 14048–14058 (2018).
113.
Morid, M. A., Borjali, A. & Del Fiol, G. A scoping review
of transfer learning research on medical image analysis using
ImageNet. Computers in Biology and Medicine
128, 104115 (2021).
114.
Kochetov, B. et al. UNSEG:
Unsupervised segmentation of cells and their nuclei in complex tissue
samples. Communications Biology 7, 1–14
(2024).
115.
Chen, J. et al. The Allen
Cell and Structure Segmenter: A
new open source toolkit for segmenting 3D intracellular
structures in fluorescence microscopy images. (2020) doi:10.1101/491035.
116.
Conrad, R. & Narayan, K. Instance segmentation
of mitochondria in electron microscopy images with a generalist deep
learning model trained on a diverse dataset. Cell Systems
14, 58–71.e5 (2023).
117.
Fisch, D. et al. Molecular definition
of the endogenous Toll-like receptor signalling
pathways. Nature 631, 635–644
(2024).
118.
Bejarano, L. et al. Interrogation of
endothelial and mural cells in brain metastasis reveals key
immune-regulatory mechanisms. Cancer Cell
42, 378–395.e10 (2024).
119.
Rangel DaCosta, L., Sytwu, K., Groschner, C. K.
& Scott, M. C. A robust synthetic
data generation framework for machine learning in high-resolution
transmission electron microscopy (HRTEM). npj
Computational Materials 10, 1–11 (2024).
120.
Lin, B. et al. A deep learned
nanowire segmentation model using synthetic data augmentation.
npj Computational Materials 8, 1–12
(2022).
121.
Shorten, C. & Khoshgoftaar, T. M. A survey on
Image Data Augmentation for
Deep Learning. Journal of Big
Data 6, 60 (2019).
122.
Lecun, Y., Bottou, L., Bengio, Y. &
Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE 86, 2278–2324 (1998).
123.
Alibrahim, H. & Ludwig, S. A.
Hyperparameter optimization: Comparing genetic algorithm against grid
search and bayesian optimization. in 2021 IEEE congress on
evolutionary computation (CEC) 1551–1559 (2021). doi:10.1109/CEC45853.2021.9504761.
124.
Ilievski, I., Akhtar, T., Feng, J. &
Shoemaker, C. Efficient hyperparameter
optimization for deep learning algorithms using deterministic RBF
surrogates. Proceedings of the AAAI Conference on Artificial
Intelligence 31, (2017).